

Development of STT-MRAM for embedded memory applications

P. Wang, G. Jan, L. Thomas, Y. Lee, H. Liu, J. Zhu, S. Le, J. Iwata-Harms, S. Guisan, R. Tong, S. Patel, V. Sundar, D. Shen, R. He, J. Haq, J. Teng, V. Lam, Y. Wang, and T. Zhong TDK-Headway Technologies, Inc., Milpitas, California

June 2017

Outline

- Basic principles of STT-MRAM
- Embedded memory applications
- STT-MRAM integration and chip level results
- Tunnel barrier reliability at chip level

Magnetic tunnel Junction (MTJ) device

- Two ferromagnetic electrodes separated by a thin MgO tunnel barrier
- Tunnel Magnetoresistance (TMR): device resistance depends on the relative orientation of the magnetization of the two magnetic electrodes

Reproduced from website of MultiDimension Technology Co.,Ltd.

Perpendicular Magnetic Anisotropy (PMA) MTJ

- PMA is needed for data retention scaling and writing efficiency
- PMA is based on interfacial anisotropy between MgO and CoFeB (Ikeda et al., Nature Mat. 2011, Worledge et al., APL 2012)
- Free layer sandwiched between two MgO interfaces for enhanced anisotropy and data retention
- Dual reference layer for reducing dipolar fields and enhanced stability

An example of perpendicular MTJ

- ~ 30 sub layers, with thickness ranging from 0.3 to 5 nm
- PMA is based on interfacial anisotropy between MgO and CoFeB
- Specialized PVD tools can achieve
 >20 wafers/hour throughput

Resistance vs magnetic field hysteresis loop

AP state

Two well-defined resistance states depending on orientation of magnetic electrodes

Writing with Spin-Transfer Torque

Transfer of spin-angular momentum from polarized conduction electrons to electrode magnetization

Reproduced from Quantumwise.com

Write: Spin Transfer Torque

Outline

- Basic principles of STT-MRAM
- Embedded memory applications
- STT-MRAM integration and chip level results
- Tunnel barrier reliability at chip level

Trade-offs of STT writing

- ➔ Write current scale with energy barrier for data retention
 - Energy barrier: $E_{B} \sim K_{u}V$
 - Write current: $I_{c0} = (4e/\hbar) (\alpha/P) E_B$

STT efficiency: $E_B/I_{c0} \sim 1-2$ in $k_BT/\mu A$

- ➔ Writing is probabilistic
 - STT vanishes for parallel alignment of PL and FL
- Switching time inversely proportional to angle between PL and FL
- Thermal fluctuations provide initial 'kick'

Trade-offs of STT writing (cont'd)

- Switching Current scales with MTJ area (constant current density)
 - smaller MTJ \rightarrow smaller current requirement
 - smaller MTJ \rightarrow worse data retention
- Current inversely proportional to pulse width at ~ ns speed
 - faster \rightarrow higher current requirement

Considerations in STT-MRAM applications

- Cell size is not limited by MTJ size, but by the size of select transistor
- Generally need to prioritize the requirements between performance and data retention

Two applications for embedded STT-MRAM

	NVM	LLC
Data retention	10 years at 85-150°C	Hours to days
Write speed	20 – 200 ns	< 10 ns
Existing technology	eFlash (~ 20 masks below 28 nm node)	SRAM (over 500F ² at 7 nm node)
MTJ size	> 50 nm	< 30 nm
Write current	> 100 µA	< 50 µA
Production	2018	?

- Range of requirements within each application
 e.g. data retention through solder reflow process (at 260°C)
- > Possibly a 3rd category in between NVM and LLC for mobile applications

Outline

- Basic principles of STT-MRAM
- Embedded memory applications
- STT-MRAM integration and chip level results
- Tunnel barrier reliability at chip level

Integration of 8 Mb test chips at TDK Headway

- 8Mbits (16x512k) 1T-1MTJ
- IBM's 90nm CMOS technology
- 50F² cell size
- Redundancy and 2bit ECC
- FEOL in IBM foundry
- BEOL in TDK-Headway's fab

STT MRAM process integration

- MRAM only add two additional layers (MTJ and bottom electrodes) to standard CMOS BEOL: 3 to 4 mask adder
- > MTJ stack is about 20 nm thick, can be easily integrated into CMOS backend process

Defect rate of 8 Mb chip

• Distribution of device current in the P state

→ less than 0.4 ppm defect rate

400C annealing after MTJ patterning

- ➔ 400C BEOL process can add up to several hours, depending on how many metal layers on top of MTJ
- Elemental movements and morphology changes can degrade anisotropy, exchange coupling, and defect level
 - selection of materials, diffusion barrier and interface/growth quality
 - Thorough engineering needed for electrodes, film stack, process, encapsulation

Robust against magnetic field disturbance

H_c mean over 3000 Oe, much higher than brown magnetic stripe card (~300 Oe) and similar to black mag-strip card (~2750 Oe)

Data retention and thermal stability factor

- > Data retention determined by the thermal stability factor of energy barrier divided by $\kappa_B T (\Delta = E_B / \kappa_B T)$
- From single MTJ's, different acceleration methods (magnetic field vs. current) and different switching process model (domain wall vs. macro-spin) can yield vastly different results
- Need to reply on direct retention test at the array level (with ppm failure rate), using only temperature as the acceleration parameter

Fitting switching field distribution by a domain-wall mitigated model vs. a uniform switching model

To reach 1ppm failure rate $\Delta=54 \rightarrow 10$ years $\Delta=80 \rightarrow 10^{12}$ years $\Delta=100 \rightarrow 10^{20}$ years

Chip level data retention (Δ_{eff} method)

- > Chip level data retention is worsen by the distribution in energy barrier
- At low error rate (linear regime), effect of distribution can be described simply as an effective thermal stability factor

 $\Delta_{\text{eff}} = \Delta_{\text{m}} - \sigma^2/2$

$$\ln(BER) \sim \ln(t) + \ln(f_0) - \left[\Delta_m - \frac{\sigma_{\Delta}^2}{2}\right]$$

MTJ for solder reflow compatibility

- Developed a MTJ stack of high PMA and thermal stability to satisfy solder reflow requirement of 260°C for 90 seconds (2016 VLSI TSMC/TDK)
- Effective thermal stability method projects 1 ppm failure rate after 10 years at 225°C

1ppm 10 years retention at 225°C

Data retention vs. size

- Thermal stability decreases with temperature because of 1/κ_BT and temperature dependence energy barrier (decrease of anisotropy and magnetic moment)
- Linear dependence on temperature in the temperature range of interest
- Data retention has significant size dependence

Data retention vs. size (cont'd)

• Linear extrapolation is used to estimate Δ_{eff} down to 125C

- Size dependence of energy barrier well fitted by a power law size^0.67
- Deviation from linear dependence of domain wall energy is due to energy barrier distributions

Error free writing in chip level

→ Error free writing on 8 Mb chips without ECC

- Down to 6 ns write pulse
- While keep data retention to 142°C for 10 years

Write Schmoo vs. pulse length (without ECC)

- → 8 Mb chip without ECC
- → Wide margin in the sub 10 ns writing regime
 - No back hopping (pinned > layer issue)
 - Occasional single bit error to → be corrected by ECC

Voltage m

Temperature dependence

Fast operation down to 4.5 ns demonstrated over wide temperature range

Potential for even faster speed

8 Mb written without error with 1.5 ns write pulse

Outline

- Basic principles of STT-MRAM
- Embedded memory applications
- STT-MRAM integration and chip level results
- Tunnel barrier reliability at chip level

Endurance: 10¹³ cycles of 10ns write pulses

- No error found in 64 bits after 10¹³ cycles
- No drift observed in MTJ resistance throughout the 10¹³ cycles

MgO Integrity: TDDB at MTJ level

- Traditional time dependent dielectric breakdown (TDDB) measurements
- Measure on discrete devices with ramp voltage source; fitting power law

$$F_{CVS}(t,V) = 1 - \exp\left[-\left(\frac{t}{\eta(V)}\right)^{\beta}\right]$$
$$\eta(V) = a \cdot V^{-n}$$

- Clean breakdown
- Test conditions
 - 4 ramp rates (1 ms, 3 ms, 10 ms, 30 ms per step)
 - 8 mV per step (0 \rightarrow 2V in 250 steps)
- Good fit to Weibull distribution
 - Shape parameter of 1.7
 - Can project endurance to ppm level

Endurance: chip level results

- Stress up to 10¹² cycles
 - > 5 Kb/chip up to 400 chips
 - > Bit line voltage divided between MTJ's and select transistors, both with variations
- Chip level endurance results consistent with device level TDDB projections

Endurance: no gradual degradation

- Survived bits show no change in electrical characteristics after cycling
 - > Even after 10¹¹ cycles at high stress voltage with high failure rate

5 Kb MTJ sense current before and after 10¹¹ write cycling

STT-MRAM for embedded memory applications

- STT-MARM has much lower cost than eFalsh and LLC SRAM
- STT-MRAM is CMOS process compatible (400°C thermal budget and low defect rate)
- STT-MARM is adaptable to suit varying requirements in data retention and performance
- STT-MRAM has demonstrated >10¹² endurance at chip level

